Indestructibility of compact spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unprepared Indestructibility

I present a forcing indestructibility theorem for the large cardinal axiom Vopěnka’s Principle. It is notable in that there is no preparatory forcing required to make the axiom indestructible, unlike the case for other indestructibility results. §

متن کامل

Locally Compact, Ω1-compact Spaces

This paper is centered on an extremely general problem: Problem. Is it consistent (perhaps modulo large cardinals) that a locally compact space X must be the union of countably many ω-bounded subspaces if every closed discrete subspace of X is countable [in other words, if X is ω1-compact]? A space is ω-bounded if every countable subset has compact closure. This is a strengthening of countable ...

متن کامل

Spaces of Compact Operators

In this paper we study the structure of the Banach space K(E, F) of all compact linear operators between two Banach spaces E and F. We study three distinct problems: weak compactness in K(E, F), subspaces isomorphic to l~ and complementation of K(E, F) in L(E, F), the space of bounded linear operators. In § 2 we derive a simple characterization of the weakly compact subsets of K(E, F) using a c...

متن کامل

Fuzzifying Strongly Compact Spaces and Fuzzifying Locally Strongly Compact Spaces

In this paper, some characterizations of fuzzifying strong compactness are given, including characterizations in terms of nets and pre -subbases. Several characterizations of locally strong compactness in the framework of fuzzifying topology are introduced and the mapping theorems are obtained.

متن کامل

On function spaces of Corson-compact spaces

We apply elementary substructures to characterize the space Cp(X) for Corsoncompact spaces. As a result, we prove that a compact space X is Corson-compact, if Cp(X) can be represented as a continuous image of a closed subspace of (Lτ ) × Z, where Z is compact and Lτ denotes the canonical Lindelöf space of cardinality τ with one non-isolated point. This answers a question of Archangelskij [2].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2013

ISSN: 0166-8641

DOI: 10.1016/j.topol.2013.07.036